ФГБУ «НМХЦ ИМ. Н.И. ПИРОГОВА» МИНЗДРАВА РФ

Поплавать с дельфинами и побыть в горах

Проект ТАСС «Будущее России» осветил работу Клиники медицинской реабилитации Пироговского Центра, где восстановление после травм, операций и инсультов проводят с помощью VR, роботов и телемедицинских сервисов.

В репортаже описано как работает технология «антиболь», чем технологии виртуальной реальности помогают психотерапевтам, и как на новые методы лечения реагируют пациенты Клиники. Рассказано и о лаборатории цифровой реабилитации, где представлено 11 различных VR-комплексов для восстановления пациентов.

Поплавать с дельфинами и побыть в горах: как VR-технологии меняют подходы к реабилитации

 

Технологии в текущем кризисе помогают не только вести полноценную жизнь — работать и общаться с близкими, находясь в самоизоляции, но и проводить лечение, в том числе и реабилитацию. Например, Клиника медицинской реабилитации, которая входит в Национальный медико-хирургический центр имени Н.И. Пирогова Минздрава России, уже давно использует удаленную платформу для реабилитации на дому и практикует лечение с помощью VR-технологий.

Как обмануть мозг

Самым цифровым и инновационным местом в клинике медицинской реабилитации Пироговского центра можно по праву назвать лабораторию цифровой реабилитации. Как рассказал порталу руководитель клиники врач-невролог, доктор медицинских наук Вадим Даминов, это первая в России площадка виртуальной реальности такого рода. Всего на ней представлено 11 различных VR-комплексов для реабилитации.

VR (по-русски читается "виар") — технологии виртуальной реальности, толчок которым дала игровая индустрия. В Пироговском центре же их адаптировали уже для реабилитационных задач.

Высокотехнологичные тренажеры погружают пациента в виртуальную реальность, где ему даются различные задания — поднять руку, начертить круг, погладить дельфина, соединить два предмета. Чтобы заинтересовать участника, все это сделано в игровой форме.

Руководитель клиники врач-невролог, доктор медицинских наук Вадим Даминов

"Чем VR-технология интересна для реабилитации — мозг можно обмануть,— поясняет Даминов. — Если пациент после инсульта может поднять паретическую (ослабленную, частично парализованную — прим. ред.) руку до определенного уровня, и это предел его мнимых возможностей, то в виртуальной реальности он может поднять ее высоко, повторяя за кем-то от имени своего "аватара".

Как именно это работает? По словам врача, нейроны первичной моторной коры особенно активизируются с помощью такого феномена, как визуальная дисторсия: виртуальное изображение искажается точно так же, как и реальное при зрительном восприятии. Таким образом, по сути, мозг обманывается.

"Важно, что потом этот навык закрепляется по выходе из виртуальной реальности", — поясняет Даминов.

Виртуальная дельфинотерапия

В одном из кабинетов центра представлено сразу несколько таких VR-систем. Например, один из тренажеров на двигательную реабилитацию использует игровую консоль Kinect, разработанную Microsoft. Он рассчитывает движения с помощью сенсоров, следит за точным выполнением пациентами задания, например поднятия руки.

"Вот смотрите, — показывает Даминов, — сейчас программа оценит его возможности, насколько он может поднять руку, насколько может отвести ее, потом появится дельфин. Дельфин будет плавать, пациент будет взаимодействовать с ним, кормить его рыбой, гладить. Все движения засчитаны, формируется статистика — что получилось, что нет".

Несмотря на то что это оборудование американской компании, все программное обеспечение полностью российское — от волгоградских разработчиков, а звуки дельфинов для саундтрека записывались в крымской бухте на второй-третий день после присоединения Крыма к России, рассказал врач.

В этой же комнате можно найти и привычные для геймеров шлемы виртуальной реальности — Oculus и HTC Vive. Всего в клинике около 20 таких шлемов.

В большинство из них включена технология "антиболь", рассказывает Даминов. То есть при реабилитации, например после тяжелой операции, пациенты надевают шлем, и там им показываются сюжеты, которые снижают восприятие боли. Это может быть имитация путешествия по лесу, подводному миру, полета над горами и др.

Большинство шлемов имеет систему айтрекинга, то есть слежения за взглядом. Таким образом, с помощью них могут заниматься даже полностью обездвиженные пациенты. Человек может глазами дать команду "хочу воды" или "хочу в туалет" и уведомить об этом медсестру. Планируется, что в будущем, используя такие системы, человек сможет взаимодействовать не только с медперсоналом, но и с внешним миром, выходя в интернет, говорит Даминов.

Такие системы используют не только упомянутые VR-технологии, но и другие, которые у всех на слуху, — тот же искусственный интеллект. Один из тренажеров способен подстраиваться под конкретного пациента, и если он "видит", что человек устал или не может выполнить задание, предлагает уровень попроще.

В следующей комнате только один большой тренажер, где пациент подключен к куче проводов и… плавает как рыба. Буквально.

Аппаратно-программный комплекс КРИСАФ для реабилитации после спинальных травм и операций
Аппаратно-программный комплекс КРИСАФ для реабилитации после спинальных травм и операций

Это разработка из Сколково, созданная российским врачом-педиатром Ильдаром Рахматуллиным, — рассказывает Даминов. — На тот момент это был первый безопорный робот. Изначально он сделан для пациентов со спинальной травмой как с полным, так и неполным разрывом спинного мозга. Такими движениями, которые близки к движениям млекопитающих, к движениям младенца в утробе матери, запускаются процессы генерации, чтобы восстановить собственные движения пациента".

Чтобы заставить обездвиженные мышцы двигаться определенным образом, имитируя движения рыбы, в тренажер встроены две системы электростимуляции: прямая — на зону поражения (как правило, спинного мозга), и функциональная — к мышцам нижних конечностей. Все это помогает мышцам правильно сокращаться и "вспоминать", как надо двигаться.

Сам пациент, помимо прочего, надевает шлем виртуальной реальности, симулирующей акваторию океана, словно он сам плавает среди рыб, медуз, дельфинов.

Дистанционный реабилитолог

По словам врачей-реабилитологов, одна из основных проблем в этой области состоит в том, что как только человек выписывается из клиники, он перестает выполнять упражнения и снова попадает в реабилитационный центр. Чтобы решить эту проблему, в клинике разработали "Степс Реабил" — специальную платформу телереабилитации. Ее можно использовать как в клинике, так и дома. Платформа включает в себя больше 3 тыс. видеороликов, подготовленных реабилитологами и направленных на различные сценарии реабилитации.

"Это не просто видеоинструкции, — говорит Ирина Горохова, заведующая кабинетом телемедицины клиники. — Это персонифицированный комплекс двигательной реабилитации, который в домашних условиях становится максимально приближенным к стационарным условиям. Здесь правильные персональные упражнения в правильном порядке с правильным количеством повторений".

Преимущества программы в том, что она не требует носителя или скачивания на компьютер. Пациенту после выписки из клиники на почту присылают ссылку, открыв которую он входит в "Степс Реабил", где уже собран индивидуальный комплекс упражнений. Причем со временем инструктор-реабилитолог может менять упражнения удаленно, с каждым новым уровнем подстраивая программу под конкретного пациента. Для мониторинга состояния пациента предусмотрено специальное тестирование, по результатам которого врач может оценить прогресс. Если все-таки пациенту что-то непонятно, то он может выйти на связь со специалистом и получить консультацию.

Ирина Горохова, заведующая кабинетом телемедицины клиники медицинской реабилитации
Платформа телереабилитации "Степс Реабил"

Несмотря на простую идею, платформа решает важную задачу: заставить человека продолжить делать правильные упражнения для скорейшей реабилитации уже вне стационара, но при этом снять нагрузку с медперсонала.

Программа переведена на английский язык и поставлялась также в Италию и Чехию.

...

Полный текст репортажа на сайте Проекта ТАСС «Будущее России» >>>